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While the Oibbs states of spin-glass models have been noted to have an erratic
dependence on temperature, one may expect the mean over the disorder to
produce a continuously varying "quenched state." The assumption of such con-
tinuity in temperature implies that in the infinite-volume limit the state is stable
under a class of deformations of the Gibbs measure. The condition is satisfied
by the Parisi Ansatz, along with an even broader stationarity property. The
stability conditions have equivalent expressions as marginal additivity of the
quenched free energy. Implications of the continuity assumption include con-
straints on the overlap distribution, which are expressed as the vanishing of the
expectation value for an infinite collection of multi- overlap polynomials. The
polynomials can be computed with the aid of a real-replica calculation in which
the number of replicas is taken to zero.
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1. INTRODUCTION

We consider here the quenched state of the Sherrington-Kirkpatrick (SK)
spin glass model, and discuss some stationarity properties which seem to
emerge in the infinite volume limit.
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The quenched free energy, at a given temperature T = ( k B ) - 1 , is deter-
mined in this model by the joint distribution of such overlaps for arbitrary
number of "replicas" (copies of the spin system subject to the same random
interaction).

The purported solution of the model via the Parisi ansatz(2) has a
number of remarkable stability properties. Our purpose is to discuss some
of these, starting from elementary continuity assumptions without assum-
ing the validity of the proposed solution. Some results in a similar direction
were previously obtained by F. Guerra.(3)

Following are the main observations presented here.

(1) We identify a stability condition, in the sense of invariance of the
quenched state in the thermodynamic limit under a broad class of deforma-
tions, which is satisfied by the state corresponding to the Parisi solution.

(2) We show that a restricted version of the stability condition is a
consequence of a property which make good physical sense, namely the
continuity of the quenched ensemble as function of the temperature.

(3) The restricted stability of the quenched state implies the vanish-
ing of expectation values for a family of overlap multireplica polynomials.
This accounts for some of the relations, though far from all, found in the
Parisi solution.

(4) We ask whether the stability condition singles the Parisi family of
states (the GREM models in the terminology of ref. 4). A considerably sim-
plified version of such a question (concerning the characterization of the
the REM states) has a positive answer(5) (in preparation).

The SK spin glass model(1) has spin variables Ci =+1, i=1,...,N,
interacting via the Hamiltonian
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with Ji, j independent normal Gaussian variables.
Sampling repeatedly spin configurations c ( t ) from the space yN =

{ — 1, 1}N, distributed independently relative to a common Gibbs state, one
obtains a random matrix of overlaps q1,m = qc

(1)
,c(m), with the overlap

defined for pairs of spin configurations a and c' as:
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2. INVARIANCE OF THE PARISI SOLUTION

Let us introduce the notation employed here for the quenched state,
and state a remarkable invariance property of the Parisi solution.

2.1. Notation for Quenched Ensembles

In disordered spin systems we encounter two distinct random struc-
tures: the spins, distributed (in equilibrium) according to the Gibbs dis-
tribution, and the random couplings (and/or random fields and other
parameters) which affect the Gibbs state, making it into a random measure.
We denote here by < - >, and in case of possible confusion by < - >j, the
expectation value over the spins averaged with respect to the Gibbs state.
An average over the couplings is denoted by Av( —). The combined
quenched average is a double average, denoted below by E( —), over the
spins and the disorder (whose probability distribution is not affected [in
the quenched case] by the response of the spin system to the random
Hamiltonian).

Quantities of interest include:

and

(where the indices on q1,2 have different meaning than those on < c 1 c 2 ) . The
second example is seen among other terms in (d/dB) E(N)\q2

1,2). In expres-
sions like this the factors Ji,j can be integrated out, e.g., through the
integration by part formula (for normal Gaussian variables)

The expression can then be further reduced to an average of a suitable
overlap monomial.

Overlap monomials are functions of the form O1<l, m<k q
nt,m

 c(l),c(m)

defined over the product space y®K , y being the spin configuration
space. Their expectation values over the corresponding product measure on
identical copies H1 < 1 < k < — >(1)

N,J are denoted by the symbol



Our discussion will concern relations among the monomial averages which
would be valid in such limits, under a number of assumptions (which
include the existence of the limit).

Remark. It is possible to develop a more complete setup for the for-
mulation of the infinite volume limit of states of the SK model, in which
the limit of the quenched averages is described in terms of a probability
measure on M(y}—the space of probability measures on y = { -1, + 1}N

which is the space of configurations of an infinite spin system (N being the
set of natural numbers). The elements of M(y) are random states incor-
porating the effects of quenched disorder. We shall, however, not pursue
this line here.

We shall invoke an additional element of structure: Gaussian fields
h ( c ) , K ( c ) defined over yN with the covariances

We shall often omit the explicit reference to J, to other subscripts such as
temperature, as well as to N. However, it should hopefully be clear from
the context when do we refer to a finite system and when to the infinite
volume limit.

Naturally, we are interested in the limit N—> i. There is no reason to
expect (at low temperatures) convergence of the state « —»J at given
realization of the random couplings { J i , j } . However it does not seem
unreasonable to expect convergence of the quenched averages of «f(c)»,
where f ( * ) can be any local function of the spins. We note that elementary
compactness arguments imply that for any temperature there is a sequence
Nk which increases to i, for which the following limits exists simulta-
neously for all the overlap monomials

and the full "quenched average" is denoted by E( —), e.g.:
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which are independent of each other and of J, in the sense exemplified by
the relation

(Analogous relation—with qi,j replaced by q2
i,j, is assumed for K.)

In the SK model (N < i), a quantity like h ( c ) appears as the cavity
field associated with an increase in N, and K ( c ) can be found as represent-
ing the change in the action corresponding to an increase in the tempera-
ture. The two can be realized as:

and

where the J'i and J"i,j are normal Gaussian variables, independent form
each other and from the couplings J appearing in the Hamiltonian. Based
on this example, we incorporate the averages over the fields h, K under the
symbol Av(-), even when the average is at fixed a.

2.2. Invariance of the Parisi Solution

The Parisi solution has the property that quenched averages are not
affected by the addition to the action of terms of the form F ( K ( c ) , h ( c ) ) ,
where F( .,.) is any smooth bounded function.

To express the above stated property, let us consider the deformed
states

and

and let EF ( K , h )( — ) represent the corresponding limit, as N -> i, for the
expectation values of overlap monomials (assuming the limit exists).



where the expectation value functionals are to be interpreted as the N -> i
limits of expectations of overlap monomials.

We shall not verify this statement here—the reader is invited to do so
from the solution which is discussed in ref. 2, references therein, and in ref. 4
—instead we shall discuss the origin and consequences of a somewhat
restricted invariance of this kind.

3. CONTINUITY IN THE TEMPERATURE AND STABILITY
UNDER DEFORMATION

The broad stability of the quenched state expressed by Eq. (2.14) has
not yet been rigorously derived for the SK model. We shall now find that
a somewhat restricted version of this condition follows from a natural
continuity assumption.

There is a significant difference between the spin-glass and the ferro-
magnetic spin models in the effect of a change in the temperature on the
equilibrium state. Reduction in the temperature amounts to increased coer-
cion towards the low energy states of the system. If the ground state is
unique, it is natural to expect the equilibrium state to vary continuously at
low temperatures. When there are only few ground states, one may expect
some discontinuities (as in the Pirogov-Sinai theory(6)). However, when
there is a high multiplicity of competing low energy states the result may
be quite different. Indeed it is reported that for a given realization of the
random Hamiltonian, the equilibrium state has a very erratic dependence
on the temperature. Nevertheless it may seem reasonable to expect that
with the average over the disorder, the quenched state might vary con-
tinuously with B.

To illuminate the consequences of the continuity assumption, let us
note that due to the addition law for independent Gaussian variables, the
Gibbs factor determining the equilibrium state at the inverse-temperature
B + AB can be presented as a sum of two independent terms:

Claim 2.1. Assuming the validity of the Parisi solution, in the
infinite volume limit at any temperature:
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where A — B means that A and B have equal probability distributions,
{J, J} are two independent sets of couplings, and

With the action cast in the form Eq. (3.1), the modified state is seen to
incorporate the effects of a strong term (of the order of the volume) pulling
in some randomly chosen directions, when the main term itself has many
competing states. The assumption of the continuity of the quenched state
appears now as less obvious, and it should therefore carry some notable
consequences.

A related observation can be made by considering the effects of defor-
mation of the state through the addition of a Gaussian field of the type
K ( c ) (Eq. (2.7)). An easy computation based on the fact that

shows that

i.e., the deformation with a field K is equivalent in a change of the order
O ( 1 / N ) in the temperature:

where the superscripts refer to the size and the inverse-temperature, the
subscript indicates a deformation of the state in the sense of Eq. (2.12) and,
as for the Eq. (2.14) the equality is understood when the two measures are
restricted to the quantities independent from the deformation variable K.

In the limit N -> i, the change in the temperature on the right side
vanishes. This immediately leads to the following observation.

Proposition 3.1. If a certain temperature range the quenched
averages E ( N , B )(H qni,j

i,j) are uniformly continuous in B, as N -> i, and the
infinite-volume limit exist for the quenched state, in the sense of Eq. (2.5),
then the limit E ( B ) (Hq n i , j

i , j } is stable under deformations by egK, i.e.:

for all the overlap monomials.



4. A LOGARITHMIC RELATION EXPRESSING THE STABILITY
PROPERTY

The stability condition which follows from the above discussed con-
tinuity assumption is indeed found among the properties of the Parisi solu-
tion, along with the more sweeping stability under deformations of the
more general form, as seen in Eq. (2.14). This invariance property can also
be cast in the form of a "logarithmic relation," which expresses an
additivity property for the marginal increments in the quenched free
energy.

Definition 4.1. We say that a random system, in the quenched
state A V N ( < — »N), has marginally-additive free energy if for any finite
collection of independent Gaussian fields K(1), K(2),..., K(1) with the
covariance Eq. (2.7), and any smooth polynomially bounded functions
F1, F2,..., Fl the following limits exist and satisfy

where the indices label independent families of fields (not to be confused
with replica indices).

where B = ^/N/(N+ 1) B and h ( c ) is a Gaussian field with covariance qc,c' .
Under the stated assumptions, in the thermodynamical limit the previous
relation becomes:

Let us note that the assumptions made above imply also another sta-
tionarity principle: the quenched state would be invariant under the defor-
mation induced by In 2 cosh Bh. To see that, compare the state of N+1
particles with that of N. The trace over the "last" spin yields for expectation
values of functions of the "first" N spins
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Our main observation is that the above marginal additivity of the
quenched free energy is equivalent to the stability of the quenched state (in
the infinite volume limit) expressed by

where F is an arbitrary smooth bounded function.
Let us note that the expectation values of quantities involving any of

the above, can be evaluated by first integrating over the extraneous
Gaussian variables (K). Using Wick's formula, this integration produces
expressions involving the overlaps among arbitrary number of replicas, as
in:

where we defined Ki = K ( c ( i ) } .
Conversely, the averages of polynomials in replica overlaps, as q2

1,2 q
2
2,3

in the above expression, can be easily expressed through the expectation
values of suitable products of independent copies of the K field.

Clearly the stability implies the marginal additivity property (of the
free energy). To prove the converse, we need to show that (assuming the
two limits exist)

for any integer n and polynomial function G. (The full statement takes a bit
more general form-involving products with different functions G for the
different copies of the spin system, however by the polarization argument
there is no loss of generality in taking the same function G for all the n
replicas.) Let us note also that, by an elementary approximation argument,
it suffices to prove Eq. (4.4) for bounded functions G.

The logarithmic property (4.1) implies that for all e

For bounded G the function q N ( e ] is analytical in a strip containing the
real axis uniformly in N, and the logarithmic property Eq. (4.1) is equiv-
alent to the vanishing of all the quantities q (n)

N(e)|e=0 in the infinite volume



for every integer p. (The implication Eq. (4.1)=>Eq. (4.10) is obvious. In
the other direction the proof can be based on the analyticity argument
indicated above.) It might be noted that an equation like Eq. (4.10) cannot
possibly hold without the average Av, unless the Gibbs state is typically
supported on a narrow collection of configurations over which the overlap
function takes only the value qc,c' =1.

Equations (4.1) and (4.10) have natural counterparts for the more
limited stability of the quenched state, expressed by Eq. (3.6). In that case
F i (K ( i ) ) need by replaced by k i K

( i ) , for i = 2, 3,... (thought F1 may still be
left arbitrary.)

In these terms the logarithmic relation is equivalent to:

where the last equality is by the first order equation, Eq. (4.6), applied to
the smooth function G2. Continuing in this fashion one may see that if
stability is fulfilled up to power n it is fulfilled for power n + 1.

Remark 4.2. The truncated expectations (cumulants) of order p
are generally defined by

Thus

which is the stability for the first power (one replica). The second derivative
gives

limit. By an inductive argument, these conditions imply Eq. (4.4): first we
observe that
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It is an interesting open question whether there are states stable in the
limited sense which do not fulfill the stronger stability condition.

5. OVERLAP POLYNOMIALS WITH ZERO AVERAGE

We now turn to some of the implications of the stability condition
Eq. (3.6) which was shown to follow from the continuity assumption. Since
the free energy and its derivatives are determined through the distribution
of the overlaps, it is natural to ask what consequences does the stability
property have in those terms. As we shall see next, the implications include
a family of relations expressed as the vanishing of the expectation value of
an infinite collection of overlap polynomials. From a combinatorial point
of view, expressions with vanishing expectation are constructed by applying
a certain operation to graphs representing overlap polynomials.

We shall use the notation encountered already in Eq. (4.3), where q1,2

indicates the overlap between two spin configurations sampled from two
different copies of the system, one in replica 1 and the other in the replica 2,
subject to the same random interaction. Products of such terms can be
represented by labeled graphs, introduced below. The expectation value
does not depended on the particular labeling of the different replicas, for
instance

where we omit, as in the rest of this section, the finite volume symbol N,
unless otherwise specified.

Let now illustrate some consequences of the stability condition starting
from the simple monomial

Stability implies the vanishing of all the derivatives of this function of L
Let us proceede for a moment under the assumption, which is proven in
the appendix, that the limit of the derivatives in X equals the derivative of
the limit, which under the stability condition is zero. The first derivative gives

which, at g = 0, vanishes for the trivial reason of parity, at g = 0. On the
other hand, the second derivative yields



Terms of the form (1 ,1) can be omitted, since in our case q1,1 = 1.
The above product turns out to be commutative but not associative.

The order of a graph is defined as 2 x number of edges, with half-edges
counting as 1/2. Let Wk denote the space of formal linear combination of
graphs of order k. For G e Wk we denote by QG the corresponding element
of the overlap algebra.

We define d: W k - > Wk+1 as the linear operator which acts on single
graphs by

If the quenched state is stable in the sense of Eq. (3.5) the above
expression tends to zero in the thermodynamic limit.

As was mentioned already, the stability property is satisfied by the
Parisi solution, and hence this relation, as well as those of higher order
derived below, are satisfied there. The particular case of vanishing of
Eq. (5.5) was recently derived (for almost every beta) without any assump-
tions in ref. 3. One may also note that the vanishing of Eq. (5.5) is also the
lowest non-trivial identity of those listed in Eq. (4.10) (corresponding to
p = 4 , F ( K ) = K).

Let us present now a systematic approach for the derivation of other
such relations.

One may use a graphical representation in which a monomial of the
form q2

1,2q2,3 is identified with a graph whose vertices are the replica
indices {1,2,3} and the edges correspond to the overlaps, q i , j . Such a
graph will be indicated by the symbol (1, 2)2 (2, 3). Furthermore, we shall
consider also products involving an additional Gaussian field (K). The
graphical representation of that factor is a half-edge, represented by a
singleton. I.e., (1, 2)(2) and (1, 2)(3) correspond to q1,2K2 and q1 , 2K3 .

We shall use a product "." which acts in the space of graphs as com-
position combined with contraction, where possible, of the two unpaired
legs. The notion may be clarified by the following examples:

At A = 0 the last two terms cancel and the expression reduces to:
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where V(G) is the set of vertices of G, and

where v is a new vertex not belonging to G. E.g., s1(1,2) = (1,2)(1)-
(1,2)(3), S 1 (1 ,2 ) (1 ) = ( 1 , 2 ) ( 1 ) . ( 1 ) - ( 1 , 2 ) ( 1 ) . ( 3 ) = (1 ,2) - (1 ,2) (1 ,3) .

Following is the pertinent observation.

Proposition 5.1. For any measure of the type E ( N ) ( - ) =
AvN(< — »N) and a deformation defined in (3.6)

for all the elements QG of the overlap algebra and every N.

The proof of Proposition 5.1 is straightforward. The operation 6 is the
graphical counterpart of the usual derivative with respect to the parameter
A in the Boltzmann weight (where it appears in AK). Such a derivative
produces a truncated correlation expressed in the rule (5.9). The (5.8) is
nothing but the Leibnitz rule for derivative of products. The first differen-
tiation produces a sum of monomials, each containing an unpaired cen-
tered Gaussian variable (K) of zero mean. The second derivative produces
another unpaired variable, which is contracted with the previous one via
the Wick rule. (This contraction motivates the product introduced above.)

Proposition 5.2. If in a certain temperature range the quenched
averages E ( N , B )(Q) are uniformly continuous in B, as N - > i , and the
infinite-volume limit exist for the quenched state, in the sense of Eq. (2.5),
then

for every element of the overlap algebra.

The uniform continuity in B implies the stability for deformation
Eq. (3.6) which means, in particular, that the limit is a constant in L To
prove the theorem we have to show that we can interchange the thermo-
dynamical lmit with the repeated differentiation w.r.t. g, in Eq. (5.10). This
is shown to be true in the appendix, through uniform (in N) bounds on the
k th derivatives of expectations of overlap monomials.

Following is a related statement which yields a somewhat stronger
conclusion (suggesting a numerical test), which is derived under a stronger
assumption.



(Under the above calling, H reaches values of order N. The corresponding
choice for the field K is Gaussian with the covariance A v ( K ( c ) K ( c ' ) ) = qp

c,c'.
The definition of s is unchanged.

6. COMPUTATION WITH REAL REPLICAS

In this section we give several characterizations of the overlap poly-
nomials of the form Qs2G for which we prove that under certain conditions
they have zero mean.

The main result is a formula which permits to compute the polynomials
from a quadratic expression in the number r of real-replicas, evaluated at
r = 0. To state it, let Mr = Sr

i=j=1 Q2
i,j, for all integers r>1. Let E(-) be

an expectation value functional, on the algebra of overlaps, which depends
only on the graph structure of the overlap monomials (i.e., is independent
of the choice of labels). Then the quantity E(QGMr) is quadratic in r. In
the following proposition, we refer to the polynomial extension of this func-
tion to all real r.

The proof of the first equality can be obtained computing the second
derivative with respect to A of equation Eq. (3.5) at 1 = 0. The second
equality is Eq. (5.10).

Analogous statements hold for other mean field spin glass models,
with the p-spin interaction Hamiltonian(7)

for every element of the overlap algebra and every N. In particular if in a
certain range of B the quantities ( d / B d B ) E ( N )(QG) are uniformly bounded
in N, and the thermodynamic limit exist in the sense of Eq. (2.5), then for
all the elements QG of the overlap algebra:

Proposition 5.3. In the SK model, at finite values N,
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where Ji1,...,ip are Gaussian variables, rescaled so that the Hamiltonian
covariance is



where v and v' are summed over the set of vertices of G and v and v' denote
a pair of added vertices.

This is a rather explicit expression for the polynomials corresponding
to a given graph G. Two examples are:

Lemma 6.2. If the number of vertices in G is l then

and

Remark. In the above example S2G is a polynomial expression with
integer coefficients whose sum is zero. That property is shared by S2G of
arbitrary monomials G.

To prove the lemma we note that by the definition of 6

The two coincide at r = 0 (defined by polynomial extension).
The proof proceeds through the explicit computation of the left and

right sides of Eq. (6.1).

where the quantity E(QGMr) is first computed for r large enough so that
all the indices appearing in QG do appear also in Mr and r > \G\ + 1.

To illustrate the statement, let us take: G = q2
1,2. In this case, the left

side of Eq. (6.1) is given by Eq. (5.5) and the right side is:

Proposition 6.1. For any expectation value functional E( — ), as
above,
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This formula is an elementary consequence of the fact that the
measure E( —) depends only on the isomorphism type of the graph
associated to a given overlap monomial. The first sum on the right side of
Eq. (6.8) corresponds to those overlap terms in Mr which involve only the
replicas appearing in G, the other two sums are split according to whether
the number of vertices not in G is 1 or 2.

The two previous lemmas prove Proposition 6.1.

7. COMMENTS

We have seen that elementary continuity assumptions on the quenched
state, imply a stability property for the infinite volume limit of the SK (and
other mean-field) spin-glass models. A particular implication is the vanish-
ing of the expectation values of certain multi-overlap polynomials, which
form an infinite dimensional family. We also saw a related condition
expressed through an explicit decay rate for the expectation values of
suitable quantities.

These observations are consistent with the Parisi theory. However, the
family of identities discussed here does not yet permit the reconstruction of
the joint probability distribution from that of a single overlap, as is the
case under the Parisi Ansatz.

It has been pointed out that within the replica-symmetry-breaking
approach the vanishing of the expectation values of the polynomials dis-
cussed here ( s 2 G ) requires only the so called "replica-equivalence" assump-
tion, which says that in the matrix Q (defined in ref. 2) each row is a

which coincides with Eq. (6.3) since (v, v) = 1 for every v.

Lemma 6.3. If all the replica indices appearing in QG are contained
in the entries of the matrix Mr and r > l + 1 then

Applying this rule twice
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for all As [-1,1] and k = 1,..., m + 1.

Then for k=1,...,m the derivatives also converge (pointwise and
uniformly), the limit is differentiable, and

We omit the proof of this basic criterion. (For m = 1 it can be proven
by using uniform approximations for (d/dt.) F n ( t ) in terms of the differences
[Fn(t + e)-Fn(t)]/e, and the rest is by induction.)

The stability stated in Proposition 3.1 amounts to an (a) type con-
dition for Fn(C) = E ( N ) ( Q ) where Q is any overlap monomial. The limit is
a constant function. The above principle will allow us to conclude that
under the assumption of Proposition (3.1) E(Q s2G) = 0, as soon as we show

(b) have uniformly bounded derivatives up to order m + 1, i.e. satisfy

(a) converge pointwise:

permutation of any other. We thank I. Kondor and M. Mezard for calling
our attention to this point. See ref. 8 for a recent account on replica-equiv-
alence.

An interesting question is whether the stability property is the sta-
tionarity condition for some variational principle. This is related to the
main question which emerges at this point, which is whether stability
implies the GREM state structure.(4) We study a restricted version of this
question in a separate paper.(5)

APPENDIX

In this appendix we show that the limit N -> i can be interchanged
with the differentiaion, in formula (5.10). This is seen in two steps. The first
is a general criterion.

Theorem 1.1. Let Fn(A) be a sequence of functions defined over
the interval X e [ — 1, 1 ], which:
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that the derivatives are uniformly bounded (i.e., establish condition (b)).
Following is a detailed version of that statement.

Proposition. Let Q be an overlap monomial which involves r
replicas. Then, for any N < i,

Proof. The expectation value of Q are expressed as E ( N ) ( Q ) =
AvN<Q>N,AK with a finite product « - »A K= < 8 > i = 1 , . . . , r <->( i )

Ak.Using
standard formula for the derivative, standard bounds on the truncated
correlations, and the fact that \Q\ < 1

Since K can be arbitrarily large, we face here a minor version of the "large
field problem." However, it can be resolved by the following estimate,

For the first vector, an elementary calculation gives the bound e(1 + g)2. For
the second factor we get

wher we used first the Jensen inequality and then the fact that (K) is a
gaussian variable of covariance < 1. |
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